A novel non-aqueous sol-gel route for the in situ synthesis of high loaded silica-rubber nanocomposites.
نویسندگان
چکیده
Silica-natural rubber nanocomposites were obtained through a novel non-aqueous in situ sol-gel synthesis, producing the amount of water necessary to induce the hydrolysis and condensation of a tetraethoxysilane precursor by esterification of formic acid with ethanol. The method allows the synthesis of low hydrophilic silica nanoparticles with ethoxy groups linked to the silica surface which enable the filler to be more dispersible in the hydrophobic rubber. Thus, high loaded silica composites (75 phr, parts per hundred rubber) were obtained without using any coupling agent. Transmission Electron Microscopy (TEM) showed that the silica nanoparticles are surrounded by rubber layers, which lower the direct interparticle contact in the filler-filler interaction. At the lowest silica loading (up to 30 phr) silica particles are isolated in rubber and only at a large amount of filler (>60 phr) the interparticle distances decrease and a continuous percolative network, connected by thin polymer films, forms throughout the matrix. The dynamic-mechanical properties confirm that the strong reinforcement of the rubber composites is related to the network formation at high loading. Both the improvement of the particle dispersion and the enhancement of the silica loading are peculiar to the non-aqueous synthesis approach, making the method potentially interesting for the production of high-loaded silica-polymer nanocomposites.
منابع مشابه
In Situ Synthesis of Rubber Nanocomposites
The preparation and characterization of rubber based nanocomposites prepared by in situ generation of inorganic oxides by means of the hydrolytic sol– gel process are reviewed in the present chapter. The sol–gel approach has been applied to several rubber matrices to prepare reinforced vulcanized and unvulcanized rubbers. Several synthetic procedures are presented while the most investigated fi...
متن کاملSynthesis of Unsymmetrical Ethers Catalysed by Polyvinyl Sulfuric Acid & PVSA / Nano RH SiO2 as a Novel Solid Acid Nanocomposite
The methodology involves preparing polyvinyl sulfuric acid as a solid acid by simple mixing ofpolyvinyl alcohol with chlorosulfonic acid in CH2Cl2 at room temperature. The catalytic ability ofthe solid acid was investigated for the facile conversion of benzylic alcohols to the unsymmetricalethers with aliphatic alcohols in the presence of the solid acid. Results show that the solid acid isan ap...
متن کاملRapid Synthesis of Nanostructured Pure Anatase TiO2 with High Thermal Stability by Polymeric Sol-Gel Route
The nanostructured anatase TiO2 with high thermal stability was prepared by polymeric sol-gel method without any additives. The particle size distribution of polymeric titania sol was determined by dynamic light scattering (DLS). Then properties of obtained titania were investigated by TG-DTA, XRD, FESEM and TEM. Also, the decolorization capability of resultant anatase was evaluated using methy...
متن کاملSol-gel Synthesis of ZnO Nanoparticles and ZnO-TiO2-SiO2 Nanocomposites and Their Photo-catalyst Investigation in Methylene Blue Degradation
In this work firstly ZnO nanoparticles were synthesized via a simple precipitation method. At the second step titanium dioxide and silicon dioxide shell were synthesized on the core. For preparation ZnO-TiO2-SiO2 the sol product was calcinated at 500 ºC for 2h. Properties of the product were examined by X-raydiffraction pattern (XRD), scanning electron microscope (SEM) and Fourier transform inf...
متن کاملPreparation and Characterization of Thermoresponsive In-situ Forming Poloxamer Hydrogel for Controlled Release of Nile red-loaded Solid Lipid Nanoparticles
Preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of Nile red-loaded solid lipid nanoparticles. Nanoparticles (NPs) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. To solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 13 شماره
صفحات -
تاریخ انتشار 2014